

TRAVAUX DIRIGES

Dans tous ces exercices, la rédaction devra être particulièrement soignée puisque c'est l'objectif principal du module!!!

TD 1 (4H00): Quantificateurs, variables, équations

Rappels de cours sur les booléens et les variables :

- 1) Un booléen (une assertion en math) est une phrase à laquelle on peut mettre une valeur de vérité, il s'exprime avec des variables. Si la variable utilisée, x par exemple, est déclarée **avant** le booléen, alors on dit que ce booléen dépend de x parce que sa valeur de vérité n'est peut-être pas la même pour toutes les affectations de x et on déclare le booléen avec le nom B(x) pour montrer la dépendance.
 - 2) Soit un booléen B universel avec une structure $\forall u \in E, B(u)$.
- Pour prouver que B est vrai on déclare une variable u de E formelle et ensuite on argumente pour prouver que le booléen B(u) est vrai.
 - La négation de B est $\exists u \in E \mid \neg B(u)$
- Pour prouver que B est faux on prouve que $\neg B$ est vraie ou bien on fait une démonstration par l'absurde.
 - 3) Soit un booléen B existentiel avec une structure $\exists u \in E, B(u)$.
- Pour prouver que B est vrai, une façon de faire est de **déclarer une variable** u **de** E **affectée judicieusement** et ensuite on argumente pour prouver que le booléen B(u) est vrai.
- Une autre façon de faire (quand on ne voit pas comment affecter judicieusement) est de déclarer une variable u de E formelle puis de réfléchir à ce que veut dire B(u) vrai jusqu'à avoir l'idée de la façon de déclarer u affectée (analyse/synthèse). Cette réflexion peut amener à reformuler le booléen pour mieux voir sa valeur de vérité et il peut être judicieux dans ce cas d'utiliser le symbole \iff si c'est possible.
 - La négation de B est $\forall u \in E, \neg B(u)$
- Pour prouver que B est faux on prouve que $\neg B$ est vraie ou bien on fait une démonstration par l'absurde.
- 4) Une variable non affectée de E qui possède une particularité n'est pas une variable formelle de E.
- 5) Certaines variables possède des expansions, par exemple $u \in \mathbb{R}^2$ a une expansion en (x, y), ce n'est pas une particularité.
 - 6) Certaines variables sont muettes pour certains objets mathématiques.

Exercices obligatoires

Exercice 1:

- a) Déclarer une variable numérique de \mathbb{R}^3 . Déclarer une variable formelle de \mathbb{R}^3 sans expansion puis avec expansion.
 - b) Soit $u=(x,y,x+y)\in\mathbb{R}^3$. Expliquer pourquoi la variable u n'est pas une variable formelle de \mathbb{R}^3 .
- c) On appelle $\mathbb{R}_{12}[X]$ l'ensemble des polynômes à coefficients réels et de degré inférieur ou égal à 12.
 - (i) Déclarer une variable affectée de cet ensemble.
 - (ii) Déclarer sans expansion une variable formelle de cet ensemble.
 - (iii) Déclarer avec expansion une variable formelle de cet ensemble.
 - (iv) On s'intéresse aux variables de $\mathbb{R}_{12}[X]$ qui s'annulent en 0.
 - Comment s'écrit cette particularité si j'observe une variable formelle sans expansion?
 - Même question en observant une variable formelle avec expansion.

- d) Déclarer une variable formelle de l'ensemble des applications définies sur $\mathbb R$ et à valeurs réelles.
- e) Déclarer une variable non affectée de l'ensemble des application définies sur \mathbb{R} et à valeurs réelles qui a la particularité de s'annuler en 12.

Exercice 2:

Pour $(x,y) \in \mathbb{R}^2$ on définit le booléen B(x,y) : $x+3y^2 \ge 0$.

- a) Quelle est la valeur de vérité de B(-4,1)? Soit $y \in \mathbb{R}$. Quelle est la valeur de B(0,y)? Soit $x \in \mathbb{R}$. Quelle est la valeur de B(x,0)? Écrire $\neg B(x,y)$.
- b) Soit le booléen $B_1: \forall (x,y) \in \mathbb{R}^2, B(x,y)$. Écrire la négation de B_1 . Quelle est la valeur de vérité de B_1 ?
 - c) Soit le booléen $B_2: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, B(x,y)$. Quelle est la valeur de vérité de B_2 ?
- d) Soit le booléen B_3 : $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, B(x,y)$. Montrer que B_3 est faux en prouvant que sa négation est vraie.
- e) Soit le booléen B_4 : $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid B(x,y)$. Montrer que B_4 est vrai. Quand on compare les booléens B_3 et B_4 que vient-on d'illustrer?

Exercice 3:

- a) Soit le booléen $B: \forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid y^2 = e^x 1.$
- (i) Déclarer comme dans le cours les booléens B(x) et B(x,y) naturellement associés à B.
- (ii) Écrire la négation de B(x,y) puis celle B(x) et enfin écrire la négation de B.
- (iii) Montrer que le booléen B est faux en prouvant que sa négation est vraie.
- b) Soit le booléen $H: \exists x \in \mathbb{R}^* \mid \forall y \in \mathbb{R}, \ xy = 12.$
- (i) Montrer que H est faux en prouvant que sa négation est vraie.
- (ii) Refaire la démonstration de H faux avec une démonstration par l'absurde.

Exercice 4:

Écrire en langage math les booléens ci-dessous ainsi que leur négation. Sans démonstration, donner si possible la valeur de vérité.

- (1) Le carré de tout réel est positif ou nul.
- (2) Il existe des réels qui sont strictement supérieurs à leur carré.
- (3) Aucun entier relatif n'est supérieur à tous les autres.
- (4) Les réels ne sont pas tous des quotients d'entiers naturels.
- (5) Aucun réel n'est un quotient d'entiers relatifs.
- (6) Il existe un réel dont la somme avec n'importe quel autre est strictement positive.
- (7) Pour chaque réel, on peut trouver un réel tel que la somme soit strictement positive.
- (8) $\sqrt{3}$ est rationnel.
- (9) u est de la forme -12 + 3k avec $k \in \mathbb{Z}$.
- (10) u est de la forme (3x 8, 12 x) avec x réel.
- $(11) \ u \equiv \frac{\pi}{4} \ [2\pi]$
- (12) La fonction f est majorée par 12 sur [-3; 8]
- (13) La fonction q est minorée par -5 sur $[0; +\infty[$.
- (14) la fonction h est bornée entre -5 et 7 sur \mathbb{R} .

Rappels de cours au sujet des équations ou inéquations :

- 1) Une équation (ou inéquation) est un booléen. Résoudre l'équation c'est trouver toutes les affectations de l'inconnue (ou des inconnues) pour lesquelles le booléen a la valeur vraie. On utilise souvent une rédaction par équivalences successives pour résoudre.
 - 2) Il faut toujours commencer par déterminer $D_{(E)}$.
- 3) Parfois on est amené à faire des découpages de $D_{(E)}$ en intervalle I_k qui conduisent à $Sol_{(E)} \cap I_k$. Il ne faut pas confondre ce découpage avec la discussion selon un paramètre.
 - 4) Il ne faut pas oublier à la fin de tenir compte de $D_{(E)}$ pour écrire l'ensemble des solutions.

Exercice 5:

- a) Soit a et b eux réels.
- (i) Donner une condition usuelle sur a et b qui permet d'écrire : $a \le b \iff a^2 \le b^2$.
- (ii) Donner une condition usuelle sur a et b qui permet d'écrire $a \leq b \iff a^2 \geq b^2$.
- b) Soit (E) l'équation $\sqrt{x+3} \le x-1$ d'inconnue x réelle. Résoudre (E).

Exercice 6:

Soit $m \in \mathbb{R}$. Soit (E_m) l'équation $x^2 - mx + \frac{1}{4} = 0$ d'inconnue x réelle. q Résoudre l'équation (E_m) .

Exercice 7:

Soit $m \in \mathbb{R}$. Soit (E_m) l'équation $(m-4)x^2 - 2(m-2)x + m - 1 = 0$ d'inconnue x réelle. Résoudre (E_m) .

Exercices complémentaires

Exercice 8:

- a) Soit le booléen $P: \forall y \in \mathbb{R}, \exists x \in \mathbb{R} \mid \ln(x+3) = y$. Montrer que P est vrai.
- b) Soit le booléen $A: \exists (a,b) \in \mathbb{R}^2 \mid \forall x \in \mathbb{R} \setminus \{1;-2\}, \frac{5x+1}{x^2+x-2} = \frac{a}{x-1} + \frac{b}{x+2}$. Montrer que A est vrai.

Exercice 9:

- a) Soit $m \in \mathbb{R}$. Résoudre l'inéquation $(E_m): x^2 2mx 2 \ge -3$ d'inconnue $x \in \mathbb{R}$.
- b) Soit $m \in \mathbb{R}$ et l'inéquation (E_m) : $\sqrt{x+3} \le m-1$ d'inconnue x réelle. Résoudre (E_m)

Exercice 10:

Notons E l'ensemble des étudiants, S l'ensemble des jours de la semaine et pour un étudiant x on note $h_i(x)$ son heure de réveil le jour j.

- a) Écrire avec des symboles mathématiques la proposition :
- « Tout étudiant se réveille au moins un jour de la semaine avant 8 h »
- b) Écrire la négation de cette proposition avec des symboles mathématiques puis en français.

Exercice 11:

Soit l'assertion P:

$$\exists x \in \mathbb{R}^*, \forall (y, z) \in \mathbb{R}^* \times \mathbb{R}^*, z - xy = 0$$

- a) Montrer que P est fausse en prouvant que sa négation est vraie.
- b) Montrer de nouveau que P est fausse avec une démonstration par l'absurde.

Exercice 12:

Soit E et F deux ensembles non vides. Soit $f: E \to F$ une application. On dit que f est surjective quand l'assertion suivante est vérifiée : " $\forall t \in F, \exists x \in E \mid f(x) = t$ "

- a) Reformuler cette assertion en langage courant en utilisant le vocabulaire "antécédent".
- b) Soit $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = x^2$. L'application g est -elle surjective?
- c) Soit $h: \mathbb{R} \to [0; +\infty[$ définie par $h(x) = x^2$. l'application h est-elle surjective?
- d) Soit $\varphi(x) = \frac{x}{x-2}$
- (i) Déterminer D_{φ} .
- (ii) L'application associée par défaut à φ est-elle surjective?
- e) Soit f((x,y)) = (x-2y,3x,y+12). Quelle est l'application associée par défaut à f? Est-elle surjective?

Exercice 13:

Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\in\mathbb{N}^*,\ u_n=\sqrt{n^2-1}-n$.

- a) Reformuler le terme général de cette suite grâce à la quantité conjuguée.
- b) Déclarer avec des quantificateurs l'assertion " la suite (u_n) est majorée " puis démontrer que cette assertion est vérifiée. Faire de même pour l'assertion " la suite (u_n) est minorée ".

TD 2 (6H00): Les sous-ensembles

Rappels de cours sur les sous-ensembles :

- 1) Un sous-ensemble est déclaré avec des accolades. Il peut être déclaré avec une écriture dite dans ce cours { type | condition } où une écriture dite paramétrée appelée aussi { forme; type } qui correspond en fait à un { type | condition existentielle } qu'on n'a pas forcément envie d'écrire.
- 2) On peut déclarer une variable formelle d'un sous-ensemble E sans expansion, en se contentent de la baptiser "Soit $u \in E$ " mais la plupart du temps, pour faire des démonstrations il sera nécessaire de déclarer la variable en expansion en affichant sa particularité.
 - 3) Les variables d'un sous-ensemble E sont muettes.

Exercices obligatoires

Exercice 14:

- a) Soit $A = \{(x, y) \in \mathbb{R}^2 \mid (x 1)^2 + (y + 2)^2 = 4\}.$
- (i) Justifier que $(3,2) \notin A$.
- (ii) Déclarer en justifiant une variable u affectée de A, est-ce que $2u \in A$?
- b) Soit $B = \{(x, y, z) \in \mathbb{R}^3 \mid x 3y + z = 0\}$
- (i) Montrer que $(0,0,0) \in B$.
- (ii) Déclarer une variable formelle u de B en expansion en montrant bien sa particularité. Montrer que $12u \in B$. En déduire qu'un certain booléen universel est vrai.
 - c) Soit $C = \{(x y, -x y, 2x y) ; x, y \in \mathbb{R}\}.$
 - (i)Dans quel espace usuel se situe C? Reformuler C en $\{ \text{ type } | \text{ condition existentielle } \}$.
 - (ii) Déclarer une variable affectée u de C. Montrer que $2u \in C$.
- (iii) Déclarer en expansion une variable formelle u de C. Montrer que $2u \in C$. En déduire qu'un certain booléen universel est vrai.
 - d) Soit $D = \{(x, 3x 5) ; x \in \mathbb{R}\}.$
 - (i) Reformuler D en $\{$ type | condition existentialle $\}$.
- (ii) Déclarer en justifiant une variable u affectée de D et montrer que $2u \notin D$. En déduire qu'un certain booléen universel est faux.

Exercice 15:

Soit
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}$$

- a) Montrer que A est non vide.
- b) Soit le booléen $P_1: \forall (u,v) \in A^2, u+v \in A$. Montrer que P_1 est vrai.
- c) Soit le booléen $P_2: \forall (u,\lambda) \in A \times \mathbb{R}, \ \lambda u \in A$. Montrer que P_2 est vrai.

Exercice 16:

Soit
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 12\}$$

- a) Montrer que A est non vide.
- b) Soit le booléen $P_1: \forall (u,v) \in A^2, u+v \in A$. Montrer que P_1 est faux.
- c) Soit le booléen $P_2: \forall (u,\lambda) \in A \times \mathbb{R}, \ \lambda u \in A$. Montrer que P_2 est faux.

Exercice 17:

Soit $A = \{(x - y, 2x - y, x - 2y) ; x, y \in \mathbb{R}\}.$

- a) Reformuler A en $\{$ type | condition existentielle $\}$. Montrer que A est non vide.
- b) Soit le le booléen $P_1: \forall (u,v) \in A^2, u+v \in A$. Montrer que P_1 est vrai.
- c) Soit le booléen $P_2: \forall (u,\lambda) \in A \times \mathbb{R}, \ \lambda u \in A$. montrer que P_2 est vrai.

Exercice 18:

Soit $A = \{(x - y - 12, 2x - y, x - 2y) ; x, y \in \mathbb{R}\}.$

- a) Reformuler A en $\{$ type | condition existentielle $\}$. Montrer que A est non vide.
- b) Soit le booléen $P_1: \forall (u,v) \in A^2, \ u+v \in A$. Montrer que P_1 est faux.
- c) Soit le booléen $P_2: \forall (u,\lambda) \in A \times \mathbb{R}, \ \lambda u \in A$. Montrer que P_2 est faux.

Rappels de cours sur les sous-ensembles usuels :

- 1) Sous-ensembles usuels de \mathbb{R} : les images de fonction (à ne pas confondre avec la courbe de la fonction qui est une sous-partie de \mathbb{R}^2). Ces parties se reformulent souvent plus simplement en intervalle ou union d'intervalles.
 - 2) Sous-ensembles usuels de \mathbb{R}^3 : les droites et les plans.
- 3) Sous-ensembles usuels de \mathbb{R}^2 : les droites, les cercles, les disques (ouverts ou fermés), l'extérieur d'un cercle, la courbe d'une fonction, une partie délimitée par une ou deux courbes de fonctions.

Exercice 19:

Déclarer les ensembles suivants en langage ensembliste $\{ \ldots \}$

- a) La droite de l'espace dirigée par $\vec{u} = (-2, 4, 3)$ et passant par A(1, 2, 0) (forme/type)
- b) La droite du plan dirigée par $\vec{u} = (-2, 1)$ et passant par l'origine (forme/type)
- c) La droite du plan d'équation 2x 5y = 0 (type/condition et forme/type)
- d) Le plan de l'espace dirigé par $\vec{u}=(2,3,-5)$ et $\vec{v}=(-3,0,5)$ et passant par A(0,0,7) (forme/type)
 - e) Le plan de l'espace d'équation x y + 12z = 3 (type/condition et forme/type)
- f) La droite de l'espace intersection des plans d'équation x y + 12z = 3 et x y = 3 (type/condition et forme/type)
 - g) Le disque ouvert de centre (-2,3) et de rayon 2 (type/condition)
 - h) Le plan privé du cercle trigonométrique (type/condition)
 - i) L'image de l'intervalle [-1, 12] par la fonction $f(x) = \frac{1}{x^2 + 1}$ (forme/type)
 - j) La courbe sur [-1;12] de la fonction $f(x) = \frac{1}{x^2 + 1}$. (type/condition et forme/type)
 - k) La courbe de la fonction $f(x) = \ln x 8$.
 - l) L'ensemble des réels congrus à $\frac{\pi}{3}$ modulo 2π .
 - m) L'ensemble des réels de la forme 3k-1 avec $k \in \mathbb{Z}$.
 - n) L'ensemble des couples de réels de la forme (x+12,x-12).

Exercice 20:

Les ensembles ci-dessous correspondent à des parties usuelles de \mathbb{R} , \mathbb{R}^2 ou \mathbb{R}^3 , identifiez-les précisément avec une phrase ou un dessin.

a)
$$A = \{(x+3, x-5) ; x \in \mathbb{R}\}$$

```
b) B = \{x^2 + 3 \; ; \; x \in [-3; 2]\}
c) C = \{(x - y + 2, 3x - 6, y + 5) \; ; x, y \in \mathbb{R}\}
d) D = \{(x - y + 2, -2x - 6 + 2y, -4y + 4x - 5) \; ; x, y \in \mathbb{R}\}
e) E = \{(x, y) \in \mathbb{R}^2 \mid -3 \le x \le 2 \text{ et } y = x^2 + 3\} \; ;
f) F = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 3 \text{ et } y \le x^2\}
g) G = \{(x, y) \in \mathbb{R}^2 \mid x^2 + (y - 2)^2 \le 3\} \; ;
h) H_1 = \{(a, 12a) \; ; \; a \in \mathbb{R}\} \; ; \quad H_2 = \{(a, 12a)\} \text{ avec } a \in \mathbb{R} \text{ fix\'e au pr\'ealable.}
i) I = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 2 \text{ et } x^2 \le y \le -x^2 + x\}
j) J = \{(x, y) \in \mathbb{R}^2 \mid x \in [0, \pi] \text{ et } y - \sin x \ge 0\}
k) K = \{e^x + 3 \; ; x \in \mathbb{R}\}
```

Rappels de cours sur les inclusions ensemblistes :

- 1) L'inclusion $A \subset B$ entre deux ensembles est le booléen universel : $\forall u \in A, u \in B$. Ainsi une façon de prouver $A \subset B$ consiste à déclarer une variable formelle u de A de façon détaillée et de prouver que $u \in B$.
- 2) Prouver $A \not\subset B$, c'est prouver que $\exists u \in A, u \notin B$; une façon de faire consiste à déclarer en justifiant une variable u affectée de A qui n'est pas dans B.
- 3) Pour prouver une égalité ensembliste non évidente, une façon de faire est de prouver une double inclusion : $A \subset B$ puis $B \subset A$.
- 4) Attention, les variables ensemblistes sont muettes pour leur ensemble, si vous voyez les mêmes lettres utilisées pour A et B il peut être prudent de prendre l'initiative de les changer et il ne faut pas les utiliser dans une démonstration sans les déclarer.

Exercice 21:

Soit
$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0 = x - y\}$$
 et $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2y - z = 0\}$

- a) Reformuler E et F en $\{$ forme; type $\}$ et les décrire géométriquement.
- b) Prouver que $F \not\subset E$ de deux façons différentes, l'une des deux façons étant géométrique.
- c) Montrer que $E \subset F$ avec une preuve ensembliste (pas géométrique).

Exercice 22:

Soit $E = \{(a+b,a,a-b) ; a,b \in \mathbb{R}\}$ et $F = \{(a,b,c) \in \mathbb{R}^3 \mid a-2b+c=0\}$. Montrer que E = F par double inclusion.

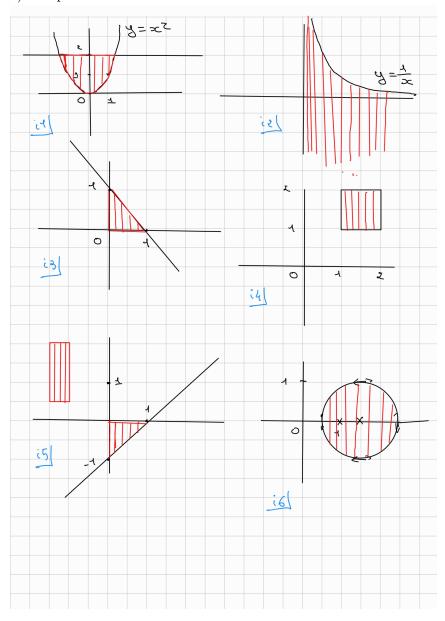
Exercices complémentaires

Exercice 23:

Déclarer les ensembles suivants :

- a) L'extérieur du cercle de centre A(-1,0) et de rayon 3.
- b) La partie du plan située au dessus de la parabole $y = -x^2 + x + 12$.
- c) Un rectangle fermé de votre choix que vous aurez d'abord dessiné.
- d) Un disque ouvert de votre choix que vous aurez d'abord dessiné

e) Les parties hachurées suivantes :



Exercice 24:

Les ensembles ci-dessous correspondent à des parties usuelles de \mathbb{R} , \mathbb{R}^2 ou \mathbb{R}^3 , identifiez-les précisément avec une phrase ou un dessin.

a)
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$$

b)
$$B = \{x \in \mathbb{R} \mid x^2 = -1\};$$

c)
$$C = \{(7, a - 8) ; a \in \mathbb{R}\}$$

d)
$$D = \left\{ \frac{1}{x+3} ; x \in [2;4] \right\}$$

e)
$$E = \{(3x, -x, 12x) ; x \in \mathbb{R}\}$$

f)
$$F = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 - 6y + 5 = 0\}$$

g)
$$G = \{(x,y) \in \mathbb{R} : x^2 + y^2 - 2x - 4y - 4 \le 0\}$$

h)
$$H = \{(3x + 6y; 2x + 4y, x + 2y); x, y \in \mathbb{R}\}\$$

i)
$$I = \{ |x| ; x \in \mathbb{R} \};$$

j)
$$J = \{(x+2y-5; 2x+4y+12, 3x+6y); x, y \in \mathbb{R}\}$$

k)
$$K = \{(x, 3x - 5, 12x + 2) ; x \in \mathbb{R}\}$$

Exercice 25:

Soit
$$A = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \text{ et } 0 \le y \le x^2\}$$

Soit $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\}$

- a) Dessiner A et B. Quelle inclusion observe-t-on? Quelle inclusion n'est pas vérifiée?
- b) Montrer par une preuve ensembliste l'inclusion observée.
- c) Justifier que l'autre inclusion n'est pas vérifiée par un argument non géométrique.

Exercice 26:

Soit $E = \{a(-1,2,3) + b(2,-1,4) ; a,b \in \mathbb{R}\}$ et $F = \{a(1,1,7) + b(-3,3,-1) ; a,b \in \mathbb{R}\}$. Montrer par double inclusion que E = F.

Exercice 27:

a) Soit
$$A = \{\ln x + 12 ; x \in]0; e]\}$$

L'ensemble A est-il majoré ? L'ensemble A est-il minoré ?

b) Soit
$$B = \left\{ \frac{1}{x+4} ; x \in [0; 8[\right\} \right\}$$

L'ensemble B est-il majoré ? L'ensemble B est-il minoré ?

c) Soit
$$C = \left\{ \frac{3}{n} + 8 ; n \in \mathbb{N}^* \right\}$$

L'ensemble \hat{C} est-il majoré ? L'ensemble C est-il minoré ?

d) Soit
$$D = \{(x, 2x - 3) ; x \in \mathbb{R}\}$$

L'ensemble D est-il majoré ? L'ensemble D est-il minoré ?

Exercice pour travailler la méthode d'analyse/synthèse

Soit
$$A = \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + (y + 2)^2 = 4\}$$
. Montrer que :

$$\exists u \in A \mid 2u \in A$$

10

Exercice sur les ensembles d'applications

Soit
$$E = \{ f \in \mathcal{F}(\mathbb{R}) \mid f(12) = 0 \}.$$

- a) Soit $\tilde{0}$ la fonction nulle. Justifier $\tilde{0} \in E$.
- b) Soit le booléen $P_1: \forall f,g \in E, f+g \in E$. Montrer que P_1 est vrai.
- c) Soit le booléen $P_2: \forall (f,\lambda) \in E \times \mathbb{R}, \lambda f \in E$. Montrer que P_2 est vrai.
- d) A-t-on $E = \mathcal{F}(\mathbb{R})$?

Td 3 (4H00) : Connecteurs logiques, opérations sur les ensembles

Exercices obligatoires

Exercice 28:

Soit le booléen P: Réussir son examen \Rightarrow Avoir travaillé régulièrement

- a) Reformuler P en langage courant avec le vocabulaire "implique".
- b) Reformuler P en langage courant avec le vocabulaire "il suffit".
- c) Reformuler P en langage courant avec le vocabulaire "il faut".
- d) Reformuler P en langage courant avec le vocabulaire "ou".
- e) Formuler la contraposée de P avec le symbole \Rightarrow .
- f) Écrire la négation de P.
- g) Écrire la contraposée de la réciproque de P.
- h) Écrire la réciproque de P.
- i) Parmi les phrases suivantes, indiquer celles qui ont le même sens logique que P en justifiant rapidement.
 - 1. Tu auras ton examen si tu travailles régulièrement.
 - 2. On ne peut avoir son examen qu'en travaillant régulièrement
 - 3. Si tu ne travailles pas régulièrement, tu n'auras pas ton examen.
 - 4. Il est nécessaire de travailler régulièrement pour avoir son examen.
 - 5. Pour avoir son examen, il suffit de travailler régulièrement.
 - 6. Ne pas travailler régulièrement entraîne un échec à l'examen.
 - 7. Si tu n'as pas ton examen, c'est que tu n'as pas travaillé régulièrement.

Exercice 29:

- a) Énoncer le théorème de Pythagore ainsi que sa réciproque.
- b) Soit ABC un triangle. Un élève calcule que $AB^2 + AC^2 \neq BC^2$ et affirme que ABC n'est pas rectangle en A d'après la réciproque du théorème de Pythagore. Son argumentation est-elle correcte?

Exercice 30:

Montrer que les assertions suivantes sont fausses en prouvant que leur négation est vraie.

- a) $\forall n \in \mathbb{N}, (n \text{ impair} \Rightarrow n \text{ multiple de } 3).$
- b) $\forall x \in \mathbb{R}, x^2 < 4 \Rightarrow 0 < x < 2$
- c) $\forall n \in \mathbb{N}, (n \text{ nombre premier } \Rightarrow n \text{ impair}).$

Exercice 31:

- 1) Démontrer les implications suivantes par contraposée :
- a) $\forall n \in \mathbb{N}, n \text{ premier} \Rightarrow n = 2 \text{ ou } n \text{ est impair}$
- b) $\forall (x,y) \in \mathbb{R}^2, x \neq y \Rightarrow (x+1)(y-1) \neq (x-1)(y+1)$
- c) $\forall a \in \mathbb{R}, (\forall \varepsilon > 0, a < \varepsilon) \Rightarrow (a < 0)$
- 2) Écrire les négations de toutes ces implications.

Exercice 32:

Soient A, B, C trois sous-ensembles de E non vides.

Montrer par double implication que:

$$A \cup B = B \cap C \iff A \subset B \subset C$$

Exercice 33:

Écrire en notation ensembliste les complémentaires des ensembles suivants :

a)
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x - 3y = 0\}$$

b)
$$B = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 4 \text{ et } y = x^2\}$$

c)
$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x - 3y = 0 = y + z\}$$

d)
$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 4 \text{ et } y \le |x|\}$$

e)
$$E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + (y - 2)^2 \le 3\}$$

f)
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid \exists a \in \mathbb{R}, x = 2a, y = -a, z = 12 + a\}$$

g)
$$G = \{(3x - y, y, 2x - 5y) \mid x, y \in \mathbb{R}\}\$$

h)
$$H = \{12 + 3k ; k \in \mathbb{Z}\}$$

Exercice 34:

Soit
$$A = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$$

Soit $B = \{(-x + 3y, x - z, y + z, 2y - z) ; x, y, z \in \mathbb{R}\}$

Donner l'écriture par défaut de $A \cap B$ en faisant apparaître une condition existentielle puis déterminer plus simplement $A \cap B$.

Exercice 35:

Soit
$$A = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$$

Soit $B = \{(x, y, z, t) \in \mathbb{R}^4 \mid 3x - y - 2z + t = 4\}$

Donner l'écriture par défaut de $A \cap B$ puis déterminer plus simplement $A \cap B$.

Exercice 36:

Soit
$$A = \{(3t+1, t+2, -2t) ; t \in \mathbb{R}\}$$

Soit $B = \{(2t+1, -t+2, 4t+1) ; t \in \mathbb{R}\}$

Identifier géométriquement les ensembles A et B. Donner l'écriture par défaut de $A \cap B$ en faisant apparaître des conditions existentielles puis déterminer $A \cap B$.

Exercices complémentaires

Exercice 37:

a) On dit qu'une application f de E dans F est injective quand le booléen suivant est vrai :

$$\forall (x,y) \in E^2, \ (f(x) = f(y)) \Rightarrow (x = y)$$

Donner la valeur de vérité de la réciproque de ce booléen.

- b) Soit $f(x) = \frac{2x}{x^2 + 3}$.
- (i) Justifier que cette fonction induit naturellement une application de \mathbb{R} dans \mathbb{R} qu'on nommera elle aussi f.
 - (ii) Calculer f(-1), f(1), f(-3), f(3).
 - (iii) L'application f est-elle injective?
 - c) Soit $f(x) = e^x + 12$
- (i) Justifier que la fonction f induit naturellement une application de $\mathbb R$ dans $\mathbb R$ qu'on nommera elle aussi f.
 - (ii) Montrer que f est injective.

Exercice 38:

Écrire en notation ensembliste les complémentaires des ensembles suivants :

- a) $A = \{ f \in \mathcal{F}(\mathbb{R}) \mid \lim_{x \to +\infty} f(x) = 0 \}$
- b) $B = \{x \in \mathbb{R} \mid x^2 = -1\}$
- c) $C = \{ z \in \mathbb{C} \mid z^2 = -1 \}$
- d) Déterminer $A \cap B$

Exercice 39:

Soit
$$A = \{(19+3t, -4-t, 10+2t) \; ; \; t \in \mathbb{R} \}$$

Soit $B = \{(1+2t, 3-t, -1+t) \; ; \; t \in \mathbb{R} \}$

- a) Identifier géométriquement les ensembles A et B.
- b) Déterminer $A \cap B$

Exercice 40:

Soit
$$A = \{(x - y, 2x - y, y - x) : x, y \in \mathbb{R}\}.$$

Soit $B = \{x - 3, 2 + 3x, -1 + x\}$; $x \in \mathbb{R}$

- a) Identifier géométriquement les ensembles A et B.
- b) Donner une équation de A
- c) Déterminer $A \cap B$.

Exercice 41:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles.

- a) Soit l'assertion " $P: \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq N) \Rightarrow (u_n \leq 20)$ ".
- (i) Cette assertion traduit-elle l'idée que (u_n) est majorée par 20 ? Écrire la négation de P.
- (ii) Écrire la réciproque de P. Formuler en langage courant l'idée portée par cette réciproque.

- b) Écrire avec des quantificateurs les assertions suivantes :
- (i) (u_n) est majorée par 12.
- (ii) (u_n) n'est pas majorée par 12.
- (iii) (u_n) est majorée par 12 à partir d'un certain rang.
- (iv) (u_n) est minorée par -3 à partir d'un certain rang.
- (v) (u_n) est bornée entre -12 et 12
- (vi) (u_n) est bornée entre -5 et 5 à partir d'un certain rang.

Exercice 42:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles. Soit $l\in\mathbb{R}$. L'assertion " (u_n) converge vers l" peut se formuler avec des quantificateurs de la façon suivante :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in N, (n \ge N) \Rightarrow (l - \varepsilon \le u_n \le l + \varepsilon)$$

On suppose que (u_n) converge vers 3

- a) Écrire avec des quantificateurs cette assertion
- b) En déduire que (u_n) est majorée par $\frac{31}{10}$ à partir d'un certain rang.
- c) Montrer que (u_n) est minorée par $\frac{299}{100}$ à partir d'un certain rang.
- d) En déduire qu'il existe un rang à partir duquel (u_n) est bornée entre $\frac{299}{100}$ et $\frac{31}{10}$

Exercice 43:

a) Un étudiant énonce la propriété suivante sur sa copie : " Si un polynôme P de degré deux a son discriminant strictement négatif, alors P n'admet pas de racine réelle".

Puis il explique qu'on a montré préalablement que le polynôme H n'a pas de racine réelle et qu'il est de degré 2 et donc son discriminant est strictement négatif.

(i) Qu'est ce qui ne va pas dans cette rédaction? (ii) Corriger l'argumentation.

Exercice 44:

Soient A, B, C trois sous-ensembles de E non vides. Montrer que :

$$(A \cup C \subset A \cup B)$$
 et $(A \cap C \subset A \cap B) \Rightarrow C \subset B$

Exercice 45:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N},\ u_{n+1}=\frac{u_n}{2}-1$

- a) Écrire avec des quantificateurs l'assertion $A:(u_n)_{n\in\mathbb{N}}$ est bornée entre -2 et 1.
- b) Montrer par récurrence que l'assertion A est vérifiée.

TD 4 (4H00) Sommes finies, symboles \sum Exercices obligatoires

Exercice 46: Questions de cours

Répondre sans justifier aux questions suivantes :

Soient $n \in \mathbb{N}^*$ et des réels $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$.

1) Est-il vrai que
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
?

2) Est-il vrai que
$$\sum_{k=1}^{n} (a_k b_k) = \left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right) ?$$

3) Soit
$$\lambda \in \mathbb{R}$$
 fixé. Est-il vrai que $\sum_{k=1}^{n} \lambda a_k = \lambda \sum_{k=1}^{n} a_k$?

4) Est-il vrai que
$$\sum_{k=1}^{n} (\lambda + a_k) = \lambda + \sum_{k=1}^{n} a_k?$$

5) Est-il vrai que
$$\sum_{k=1}^{n} k a_k = k \sum_{k=1}^{n} a_k ?$$

6) Est-il vrai que
$$\sum_{k=1}^{n} n = n$$
?

Rappels de cours sur les sommes finies :

- 1) Une somme est arithmétique quand le terme général u_k est de la forme a + kr avec aet r des constantes et k l'indice de la somme. la somme est alors égale au nombre de termes multiplié par la moyenne du premier terme et du dernier.
- 2) Une somme est géométrique quand le terme général u_k est de la forme λq^k où λ et qsont des constantes et k l'indice de la somme. Si la raison q est différente de 1, la somme est égale au premier terme, multiplié par le quotient entre (1- raison^{nombre de termes}) et (1 - raison). Si la raison vaut 1, c'est une somme de constante et elle est donc égale au nombre de termes multiplié par la constante.
 - 3) Une somme télescopique se reformule facilement en l'écrivant en expansion.
- 4) Une somme binomiale se reconnait facilement grâce aux coefficients binomiaux. Pour bien identifier, on repère la valeur de n dans le coefficient binomial et non pas à l'extrémité du symbole \sum .

Exercice 47:

a) Calculer
$$S_1 = \sum_{k=2}^{30} (3-2k)$$
.

b) Calculer
$$S_2 = \frac{1}{3} + 1 + \frac{5}{3} + \dots + \frac{19}{3} + 7$$
.
c) Soit $n \in \mathbb{N}^*$. Calculer la somme S_3 des n premiers nombres impairs.

d) Calculer
$$S_4 = \sum_{k=5}^{52} 5 \times 3^k$$

e) Calculer $S_5 = 18 + 54 + 162 + \dots 39366$ sachant que $39366 = 18 \times 2187$ et que le log en base 3 de 2187 est 7.

Exercice 48:

a) Soit
$$S_7 = \sum_{k=5}^{108} (-1)^{k+1} 2^{k+1}$$
;

- (i) Calculer S_7 en observant que $(-1)^{k+1}2^{k+1}=(-2)(-2)^k$
- (ii) Pouvait-on calculer S_7 avec le changement d'indice k'=k+1? Si oui faites-le.

b) Soit
$$n \ge 2$$
 et $S_8 = \sum_{k=2}^n 5^{2k-1}$.

- (i) Peut-on calculer S_8 avec le changement d'indice k' = 2k 1? Si oui faites-le.
- (ii) Calculer S_8 en observant une reformulation de 5^{2k-1} .

c) Soit
$$n \ge 2$$
 et $S_9 = \frac{5^k}{3^{k-2}}$. Calculer S_9 .

d) Calculer
$$S_{10} = \sum_{k=0}^{12} {12 \choose k} 3^k (-2)^{12-k}$$
.

e) Calculer
$$S_{11} = \sum_{k=0}^{11} \binom{12}{k} 3^k$$
; f) Calculer $S_{12} = \sum_{k=0}^{n-1} \binom{n}{k} (-1)^k 2^{n-k}$ avec $n \in \mathbb{N}^*$.

Exercice 49:

a) Montrer que
$$\forall k \in \mathbb{N}^*, \ \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

b) Soit $n \in \mathbb{N}^*$, déduire de la question précédente une reformulation sans symbole \sum de $\sum_{k=1}^{n} \frac{1}{k(k+1)}.$

Exercice 50:

Soit
$$n \in \mathbb{N}^*$$
, on pose $S_n = \sum_{k=1}^n k^2$ et $T_n = \sum_{k=1}^n (k+1)^3 - k^3$

- a) Calculer T_n sans symbole \sum . b) Soit $k \in \mathbb{N}^*$, développer $(k+1)^3 k^3$ et en déduire une nouvelle formulation de T_n en fonction de S_n .
- c) Déduire des questions précédentes une reformulation de S_n sans symbole \sum sous une forme factorisée qui fait intervenir trois polynômes de degré 1.

Exercice 51: Disjonction pair/impair

a) Calculer
$$\sum_{k=0}^{128} u_k$$
 avec $u_k = 3k - 2$ si k est pair et $u_k = 2^k$ si k est impair.

b) Calculer
$$\sum_{k=0}^{132} u_k$$
 avec $u_k = 0$ si k est pair et $u_k = (-1)^p 2^p$ si $k = 2p + 1$ est impair.

c) Calculer
$$\sum_{k=0}^{151} u_k$$
 avec $u_k = 12$ si k est pair et $u_k = (-1)^p 3^{p-1}$ si $k = 2p-1$ est impair.

d) Calculer
$$\sum_{k=0}^{51} u_k$$
 avec $u_k = (1 + (-1)^k)7^{k+2}$ par disjonction pair/impair.

Exercice 52:

Soit
$$n \in \mathbb{N}^*$$
, on pose $S_n = \sum_{k=0}^n \frac{k}{(k+1)!}$

- a) Reformuler S_n avec un changement d'indice, de façon à simplifier le dénominateur.
- b) Reformuler la somme obtenue en scindant la fraction et en déduire une formulation de S_n sans symbole \sum

Exercices complémentaires

Exercice 53:

Soit $n \in \mathbb{N}$.

a) Calculer
$$u_n = \sum_{k=0}^n \binom{n}{k}$$
 et $w_n = \sum_{k=0}^n (-1)^k \binom{n}{k}$.

- b) Soit $k \in \mathbb{N}$. Que peut-on dire de $(-1)^k + 1$? Formuler $u_{2n} + w_{2n}$ sous une forme simplifiée qui utilisera cette remarque.
 - c) En déduire la valeur de $s_n = \sum_{k=0}^{n} {2n \choose 2k}$

Exercice 54:

On rappelle que pour un réel $x \ge 0$ il existe un unique réel positif y qui vérifie $y^4 = x$ et qu'on le note $\sqrt[4]{x}$ ou encore $x^{1/4}$.

Soit
$$n \in \mathbb{N}$$
. On pose $u_n = \frac{1}{(\sqrt{n+1} + \sqrt{n})(\sqrt[4]{n+1} + \sqrt[4]{n})}$.

- a) Utiliser la quantité conjuguée de $\sqrt[4]{n+1} + \sqrt[4]{n}$ pour reformuler u_n
- b) En déduire que $\sum_{k=1}^{9999} u_k = 9$.

Exercice 55:

- a) Résoudre l'équation $e^{2it}=1$ d'inconnue $t\in\mathbb{R}.$
- b) Soit $n \in \mathbb{N}^*$ et $t \in \mathbb{R}$.
- (i) Calculer $\sum_{k=0}^{n} e^{2ikt}$.
- (ii) En déduire $\sum_{k=0}^{n} \cos(2kt)$ et $\sum_{k=0}^{n} \sin(2kt)$

Exercice 56:

- a) Soit $t \in \mathbb{R}$. Développer $(e^{it} + e^{-it})^4$ avec le triangle de Pascal. En déduire la linéarisation de $\cos^4(t)$.
 - b) Linéariser $\sin^5 t$.

Exercice 57:

On veut définir une suite (u_n) par récurrence en posant :

$$u_0 = 2, \quad \forall n \in \mathbb{N}, \ \ln(u_{n+1}) = 1 + \ln(u_n)$$

a) Montrer que la suite ainsi posée est bien définie, c'est à dire montrer que :

$$\forall n \in \mathbb{N}, \ u_n \text{ defini et } u_n > 0$$

- b) La suite (u_n) est-elle monotone? convergente? Si oui quelle est sa limite?
- c) Exprimer $\sum_{k=0}^{n} u_k$ sans symbole Σ .
- d) Exprimer $\sum_{k=1}^{n} \ln(u_k)$ sans symbole Σ , en déduire $u_1 \times u_2 \times \cdots \times u_n$ en fonction de n.

Exercice 58:

Calculer les sommes suivantes :

a)
$$\sum_{k=0}^{n} k \binom{n}{k}$$
 b) $\sum_{k=1}^{n} (-1)^k k \binom{n}{k}$

Indication: on pourra commencer par reformuler $k \binom{n}{k}$

Exercice 59:

a) Soit $n \in \mathbb{N}^*$ et k entier tel que 0 < k < n. Montrer que (Formule de triangle de Pascal) :

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

 $Rappel: (n+1)! = (n+1) \times n!$ (reformulation usuelle)

b) Montrer par récurrence la formule du binôme.

Exercice 60:

a) Calculer la somme S_5 des entiers multiples de 7 plus grands que 100 et plus petits que 1000

18

- b) Déterminer $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{2^k}$
- c) Déterminer $\lim_{n\to+\infty}\sum_{k=0}^n 7\frac{3^{k-1}}{5^k}$

Exercice 61:

Soient $q \in \mathbb{R}$ et $n \in \mathbb{N}$.

- a) Calculer $\sum_{k=0}^{n} q^{2k}$; b) Pour $n \ge 4$, calculer $\sum_{k=3}^{n-1} 12q^{k+1}$.
- c) Pour $n \ge 4$, calcular $\sum_{k=3}^{n-1} q^{n+1}$.